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Rigorous link between the conductivity
and elastic moduli of fibre-reinforced
composite materials

By L. V. GIBIANSKY AND S. TORQUATO

4 Department of Civil Engineering and Operations Research, and the Princeton
T Materials Institute, Princeton University, Princeton, NJ 08544, USA

We derive rigorous cross-property relations linking the effective transverse electri-
cal conductivity o, and the effective transverse elastic moduli of any transversely
isotropic, two-phase ‘fibre-reinforced’ composite whose phase boundaries are cylin-
drical surfaces with generators parallel to one axis. Specifically, upper and lower
bounds are derived on the effective transverse bulk modulus k. in terms of o, and
on the effective transverse shear modulus p. in terms of o,. These bounds enclose
certain regions in the o,—k. and o.—u. planes, portions of which are attainable by
certain microgeometries and thus optimal. Our bounds connecting the effective con-
ductivity o, to the effective bulk modulus &, apply as well to anisotropic composites
with square symmetry. The implications and utility of the bounds are explored for
some general situations, as well as for specific microgeometries, including regular
and random arrays of circular cylinders, hierarchical geometries corresponding to
effective-medium theories, and checkerboard models. It is shown that knowledge of
the effective conductivity can yield sharp estimates of the effective elastic moduli
(and vice versa), even for infinite phase contrast.
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1. Introduction and cross-property statements

An intriguing fundamental as well as practical question in the study of heterogeneous
materials is the following: Can different properties of the medium be rigorously linked
to one another? Such cross-property relations become especially useful if one property
is more easily measured than another property. Since the effective properties of ran-
dom media reflect certain morphological information about the medium, one might
expect that one could extract useful information about one effective property given
an accurate (experimental or theoretical) determination of another property, even
when their respective governing equations are uncoupled. Although recent progress
has been made in the establishment of rigorous cross-property relations for a va-
riety of properties (Prager 1969; Milton 1984; Berryman & Milton 1988; Torquato
1990, 1992; Avellaneda & Torquato 1991; Cherkaev & Gibiansky 1992; Gibiansky &
Torquato 1993), this subject remains fertile ground for research.

In this article we focus our attention on deriving cross-property relations between
the effective transverse conductivity and effective transverse elastic moduli of trans-
versely isotropic, two-phase ‘fibre-reinforced’ composites whose phase boundaries are
cylindrical surfaces with generators parallel to one axis. Thus, the problem reduces to
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244 L. V. Gibiansky and S. Torquato

studying two-dimensional, two-phase, isotropic composites (i.e. plane elasticity and
conductivity) with effective properties that are identical to the corresponding trans-
verse properties of fibre-reinforced composites (Christensen 1979). For an isotropic
medium, the material is characterized by three scalar constants: conductivity o, bulk
modulus x, and shear modulus u. The properties of the first and second phases are
described by the triples (o1, K1, p1), (02, K2, p2), respectively. Similarly, the triple
(04, K, pix) denotes the corresponding effective properties which depend on the phase
properties, phase volume fractions f; and f, = 1 — f1, and on the microstructure.
For every fixed microstructure, one may calculate the effective properties. Therefore,
any composite corresponds to some point (0., K«, px) in a three-dimensional o,—
K«—l+ Space. As the microstructure is varied, this point moves and traces out some
region in this space. It is of great interest to know the whole set of such points that
corresponds to composites of all possible structures. However, this is a very difficult
problem in general and we do not attempt to resolve it here. Instead our objective is
to find some bounds on this set. Moreover, we restrict our attention to the bounds
of the projection of this set onto the o,—x, and o,—u, planes.

Before discussing the main results of this paper, it is useful first to describe some
related results. Using variational principles, Milton (1985) showed that, for arbitrary
d-dimensional, isotropic, two-phase media, if the phase bulk moduli k; equal the
phase conductivities o; and phase Poisson’s ratios v; are positive, then the effective
bulk modulus «, is bounded from above by the effective conductivity o,. It is simple
to extend Milton’s result to the more general situation in which xky/k1 < 0g/07
(Torquato 1992). Specifically, for d-dmensional isotropic two-phase media of arbitrary
topology having positive phase Poisson’s ratios v; = (k; — ;) /(k; + i), the following
dimensionless relation holds:

Ky/K1 < 04 /01, (1.1)

where ko/k1 < 09/01. Using this result, Torquato (1992) derived an upper bound
on the effective shear modulus p, in terms of o, and the effective Poisson’s ratio
Ve = (Ks — s )/ (Ks + pis). In the case of d = 2, this expression reads

&<0'*(1-—-I/*)

X 3 ].2
k1 o1 (1+uv) (1-2)

where again k2/k1 < 02/01. It is important to note that relations (1.1) and (1.2) are
valid for arbitrary volume fraction f; =1 — fo. We shall come back to these expres-
sions later in the paper. Berryman & Milton (1988) found cross-property relations for
0+—kK+ and o,—p, relations for three-dimensional isotropic composites in terms of the
conductivity by eliminating geometrical parameters involved in three-point bounds
on the properties. One can get corresponding results for the problem under study.
We mention, however, that the application of the Berryman—Milton procedure in the
two-dimensional space yields cross-property bounds which generally are not as sharp
as the ones derived in the present work. This suggests that their three-dimensional
results also can be improved. This will be the subject of a future paper.

Our major findings are that we have obtain the sharpest known bounds on the sets
of pairs o,—k, and o,—pu, that correspond to two-dimensional, two-phase, isotropic
composites of all possible microgeometries at a prescribed or arbitrary volume frac-
tion f; by using the so-called translation method. These bounds enclose certain re-
gions in the o,—k, and o,—u. planes. Particular boundaries of these regions are realiz-
able by certain microgeometries and thus are optimal bounds in these instances. It is
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Rigorous conductivity-elastic moduli bounds 245

important to emphasize that our results for the effective conductivity and bulk mod-
ulus are not restricted to isotropic composites only but apply as well to anisotropic
composites with square symmetry (e.g. checkerboard models).

We note that the determination of the electrical conductivity o, is mathematically
equivalent to finding either the thermal conductivity, dielectric constant, magnetic
permeability or diffusion coefficient. Thus our cross-property relations connect the
elastic moduli to any of these properties as well.

Our cross-property bounds were already stated in a short letter (Gibiansky &
Torquato 1993). However, the proof of these bounds were not given and few appli-
cations were considered. The major aims of the present work are to provide detailed
proofs of the cross-property relations and to apply them for some general situations
as well as for specific microgeometries, including regular and random arrays of cir-
cular cylinders, hierarchical geometries corresponding to effective-medium theories,
and checkerboard-type models.

Let us now state our main results, namely, cross-property bounds on the sets of
pairs (0., ks) and (0, u.) that correspond to two-dimensional, two-phase, isotropic
composites of all possible microgeometries at a prescribed volume fraction. To de-
scribe the bounds, we first need to introduce some notation. Let F(d1,ds, f1, f2,v)
be the following function:

fifo(dy — dp)?
fody + frda +y
For simplicity of notation we will further omit the first four arguments and will use
the brief notation F'(dy,ds, f1, fo,y) = Fu(y).

Remark 1.1. This function is a scalar variant of the inverse Y-transformation. The
definition and properties of the Y-transformation will be discussed in § 2.

F(dy,ds, f1, f2,y) = frdi + fadz — (1.3)

Now let 014, 02, denote the expressions,

o1« = Fy(01), 02 = F,(02). (1.4)
Similarly, let k14, k2. denote the expressions,
Kixe = Fio(p),  Kox = Fio(p2) (1.5)
and fi1«, ok, M3+, Hax, denote the expressions,
pie = Fu(kipa /(K1 +2m1)),  paw = Fu(kapa/ (k2 + 2p2)), (1.6)
pae = Fu(kopn /(Ko + 2u1)),  paw = Fy(kapa/ (K1 + 2p2)). (1.7)
Moreover, let the harmonic average of the phase bulk moduli be defined by
K = [fi/k1 + fa/Ka] T = F(0). (1.8)

Remark 1.2. The formulas (1.4) and (1.5) coincide with the two-dimensional vari-
ant of the upper and lower Hashin—Shtrikman bounds on the effective conductivity
(see Hashin & Shtrikman 1962) and effective bulk modulus (see Hashin & Shtrikman
1963; Hashin 1965) of isotropic composites, respectively. Formulas (1.6) and (1.7)
coincide with the two-dimensional Hashin—Shtrikman—Walpole bounds on the shear
modulus (see Hashin & Shtrikman 1963; Hashin 1965; Walpole 1966, 1969). These
bounds were also obtained by Hill (1964).

Phil. Trans. R. Soc. Lond. A (1995)
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246 L. V. Gibiansky and S. Torquato

The bounds that we found are given by segments of hyperbolas in the o,—x, and
0.+ planes with asymptotes that are parallel to the axes 0, =0, K, =0 or o, =0,
1+ = 0. For this reason we mention that every such hyperbola in the x,—y. plane can
be described by the equation

A(xy — 20)(ye — yo) = 1. (1.9)
It can be defined be three points that it passes through. We denote by

Hyp[(z1, 1), (x2,92), (3,y3)]

the segment of such hyperbola that passes through the point (z1,v1), (z2,¥2), and
when extended, passes through the point (3, y3). It may be parametrically described
in the z,—y, plane as follows:

(1 =) (@1 = x2)?

(I =y)21 +ywe — a3’

Y1 =)y = y2)*
(L =Y)y +7y2 — g3~

where v € [0, 1]. Now we are ready to state our main results.

z, =y + (1 = 7))z —
(1.10)

Yo =91 + (1 =7)y2 —

(a) Conductivity-bulk modulus bounds

Statement 1.1. To find cross-property bounds on the set of the pairs (o, k,) for
any isotropic composite at a fixed volume fraction f; = 1 — f5, one should inscribe in
the conductivity-bulk modulus plane the segments of the following four hyperbolas:

HYP[(Um Hl*)7 (02*7 "(‘72*)7 (017 th)], Hyp[(ol*, “1*), (0'2*7 52*)7 (0'2, ’ih)]a

Hyp[(o1x, £14), (020, K24), (01, 61)], Hyp[(014, 514), (024, K2i), (02, o))
The outermost pair of these curves gives us the desired bounds (see figure 1).

Remark 1.3. Statement 1.1 connecting the effective conductivity to the effective
bulk modulus is not restricted to isotropic composites only but applies as well to
anisotropic composites with square symmetry.

Figure 1 depicts conductivity-bulk modulus bounds for the following values of the
parameters:

0'2/0'1 = 20, /iQ/I{l = 20, UVl = Vg = 03, fl =0.2. (].].].)

The corner points A = (014, K14), and B = (02, k2.) of the set enclosed by the
bounds are optimal because they correspond assemblages of coated circles (Hashin
& Shtrikman 1963) as well as to isotropic matrix laminate composites (Francfort &
Murat 1986). The hyperbolas Hyp[(o14, £14), (0w, Kax ) (01, k1)] (curve 1 of figure 1),
and Hyp[(o14,K14), (0ax, Kax ) (02, K2)] (curve 2 of figure 1) correspond to the assem-
blages of doubly coated spheres or to doubly coated matrix laminate composites (see
Cherkaev & Gibiansky 1992; Gibiansky & Milton 1993). Depending upon the values
of the parameters, one of these curves always forms part of the bound (upper bound
of figure 1). Thus, this is an optimal bound because there exist composites that re-
alize it. At the moment we do not know any structures that realize the other two
segments of hyperbolas (curves 3 and 4 of figure 1).

Note that unlike the bound (1.1), our results include information about the phase

Phil. Trans. R. Soc. Lond. A (1995)
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20.0
0,/6,=20, x,/x,=20, v =v,=0.3, f,=0.2
<
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o
2 3
3
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S
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0.0 ‘ ‘ ‘
0.0 5.0 100 15.0 20.0

Dimensionless conductivity, 6,/c,

Figure 1. Cross-property bounds in the conductivity-bulk modulus plane. The internal region
(bounded by curves 1 and 4) represents the bounds for fixed volume fraction. Curves 1, 2, 3
and 4 are the segments of the hyperbolas described in statement 1.1. On the scale of the figure,
curves 1 and 2 appear to coincide. The larger region (bounded by curves 5 and 6) represents
the bounds for arbitrary volume fraction. The unmarked straight line is the bound (1.1).

volume fractions. In order to obtain bounds for arbitrary volume fraction, one can
take the union of the sets defined by our bounds over the phase volume fractions.
This union is bounded by the curve 5 and 6 of figure 1. The unmarked straight line
of figure 1 corresponds to the upper bound of relation (1.1). This bound is optimal
and coincides with our new bound when o3/01 = ka/k;1 and the Poisson’s ratios of
the phases are equal to zero (i.e. uy /K1 = pa/k2 = 1). In general our volume-fraction
independent upper bound is more restrictive than (1.1).

(b) Conductivity-shear modulus bounds

Statement 1.2. To find cross-property bounds on the set of the pairs (0., ) for
any composite at fixed volume fraction f; = 1 — f,, one should inscribe in the
conductivity-shear modulus plane the segments of the following four hyperbolas:

Hyp[(o14s po14)s (0245 pi3s ), (01, p1)], Hyp[(014, pi14)s (024, H34), (02, pi2)],

Hyp[(gl*v /114*)7 (02*7 /112*)7 (UI’ ,ul)]a HYP[(UU, M4*)> (0'2*7 NQ*), (0'2, NQ)],
and the segments of two straight lines:

Oy = O1x, Hox € [ﬂl*aﬂél*]’ and Oy = 02, Hox S [/112*,/113*]-
The outermost of these curves give us the desired bounds (see figure 2).

Figure 2 illustrates the conductivity-shear modulus bounds for the phase moduli
and volume fractions as specified by (1.11). We see that the cross-property bounds
in the o,—u. plane are represented by a curvilinear trapezium. The straight sides AB
and C'D are given by the Hashin—Shtrikman bounds on the effective conductivity. The
other two curvilinear sides (new bounds that are denoted as curves 1 and 4 of figure 2)
are the hyperbola segments. Observe that the two corner points A = (0714, ft14), and
C = (094, pr2«) of the set enclosed by the bounds correspond to the matrix laminate

Phil. Trans. R. Soc. Lond. A (1995)
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40.0

0,/6,=20, x,/x,=20, v=v,=0.3, f,=0.2

30.0

20.0

-
o
)

Dimensionless shear modulus, . /u,

0.0 5.0 10.0 15.0 20.0
Dimensionless conductivity, ¢ /o,

Figure 2. Cross-property bounds in the conductivity-shear modulus plane. The internal trapez-
ium ABCD (B and C joined by curve 1 and A and D joined by curve 4) represents the bounds
for fixed volume fraction. Curves 1, 2, 3 and 4 are the segments of the hyperbolas described in
statement 1.2. The larger internal lens-shaped region (bounded by curves 5 and 6) represents
the bounds for arbitrary volume fraction. The unmarked straight line is the bound (1.2) with
ve = 0.

composites that realize the Hashin—Shtrikman bounds for elasticity and conductivity
and thus are optimal (Francfort & Murat 1986). The other two points B = (0714, fiax)
and D = (092, pu3.) correspond to the structures that could realize the Walpole
bounds on the shear modulus of a composite. It is unknown at the moment whether
there exist such geometries. Note that there exist composites having the property
pair (o, p.) that lie on the vertical sides of the trapezium (see figure 2). They are
polycrystals made of square symmetric matrix laminate composites (Cherkaev &
Gibiansky 1984).

One can again take the union of the sets defined by our bounds over the phase
volume fractions, to obtain cross-property bounds for arbitrary volume fraction (set
bounded by the curves 5 and 6 of figure 2). The unmarked straight line of figure 2
corresponds to the upper bound (1.2) with v, = 0 (i.e. a weaker form of equa-
tion (1.2)), which does not incorporate volume fraction information. Our volume-
fraction-independent upper bound is more restrictive than the weak form of (1.2)
(with v, = 0).

In summary, the effective elastic moduli and conductivities of composites are not
independent but are, in fact, connected through the microstructure. However, this
relation is not one-to-one because composites of different microgeometries may pos-
sess the same conductivities but different elastic moduli, and vice versa. The cross-
property bounds given here show how the values of the effective bulk or shear modulus
(conductivity) of the composite are constrained assuming that the phase properties
and volume fractions are fixed and the effective conductivity (bulk or shear modulus)
is known.

The detailed proofs of the above cross-property bounds and the methodology lead-
ing to them are described in the ensuing sections. Application of these bounds for
some general situations as well as for specific microstructures are given in the last

Phil. Trans. R. Soc. Lond. A (1995)
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Rigorous conductivity-elastic moduli bounds 249

section of the paper. The reader who is interested in the results only can skip §§2-5
and go directly to §6.

2. Local and homogenized equations

In this section we describe the local and homogenized equations of plane elasticity
and conductivity, and introduce relevant notations.

(a) Basic equations and notations
We deal with the plane problem of the elasticity and the plane conductivity prob-
lem. The elastic state of the body is described by the local relations,
Vir=0, e=3Vu+(Vu)"), v=()7", 7=C:¢ (2.1)

where wu is the displacement vector, € and 7 are the strain and stress tensors, respec-
tively, and C' is the stiffness tensor.

It is convenient to introduce the following orthonormal basis in the space of the
second-order tensors (for the elasticity problem we use the representation by Lurie
& Cherkaev (1984b, 1986b); see also Cherkaev & Gibiansky (1993) and references
therein):

e o ) men (Dm0 )

The tensors a;, a,, as form the orthonormal basis of the space of the symmetric
second-order tensors. Strain and stress tensors have the following representation in
this basis,

3 3
€= E €a;, T = E TiQy, (2'3)
i=1 i=1

where the coefficients ¢;, 7; are given by

€ =€:a; = %(611 +e), €@ =€iay= %(611 —€), € =€:az3= V2er,
Tm=T:01= ﬁ(TH +Te2), T2=T:iay= %(Tn —T), T3=T:a3= \/5712,
(2.4)
and €;;, 7;; are the elements of the matrices € and 7 in the Cartesian basis , j.
Remark 2.1. The symbol : denotes contraction with regards to two indices, i.e.
2 2

2
a:bzzz:aijbji; a=D:b if aij:ZZDijklblkv Z=1,2,j=1,2
=1

i=1 j=1 k=1
(2.5)

In the basis (2.2), Hooke’s law for an isotropic material has the form (Atkin & Fox
1990)

T = 2/161, Ty = 2,&62, T3 = 2/163. (26)

Here k = k(x) and p = p(x) are the bulk and shear moduli, respectively, of the
plane elasticity (plane-strain) problem at the point & = (z1, x2).

Phil. Trans. R. Soc. Lond. A (1995)
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Remark 2.2. The plane-strain bulk modulus & is expressed as
k=k+3p, (2.7)

in terms of the bulk modulus k of three-dimensional theory (Christensen 1979). The
plane shear modulus p does not differ from the transverse shear modulus used in the
three-dimensional theory.

Remark 2.3. If the composite is a thin plate, then we consider the plane stress
problem. In this case the plane stress bulk modulus « is expressed as
9k u
KR =
3k +4p
(Christensen 1979; Eischen & Torquato 1993). The plane stress shear modulus p
again does not differ from the shear modulus used in the three-dimensional theory.

(2.8)

The isotropic stiffness tensor C'(k, p1) is represented by the diagonal matrix

2 0 O
C(r,p) = ( 0 2u O > . (2.9)
0 0 2u
The elastic energy density can be written either as a quadratic form of strains
We(e) =€:C :¢, (2.10)
or as a quadratic form of stresses
W (r)=7:8:T, (2.11)
where 1/26 0 0
S=C'= < 0 1/2u 0 ) (2.12)
0 0 1/2u

is the compliance tensor.
Following Cherkaev & Gibiansky (1993), we also introduce the non-symmetric
matrix ¢ = Vu of the gradient of displacement vector u

4
(=Vu, ¢=) Ga;, G=C:a; i=1234 (2.13)
i=1

Note that the first three components of tensors ¢ and € coincide, i.e.
Ci = €;, 1= ]., 2,3, (214)

and the fourth component of ¢ ({4 # €4 = 0) does not effect the equations of elasticity.
Specifically, the elastic energy density (2.10) as a function of the tensor ¢ becomes

We()=¢:C": ¢, (2.15)
where the (4 x 4) matrix C’ has the diagonal form
2< 0 0 O
, o 2z 0 o0
C' = 0 0 2 0 (2.16)
0 0 0 O

in the introduced basis a1, az, as, ay.

Phil. Trans. R. Soc. Lond. A (1995)
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The conductivity problem is described by the local relations,
V-3=0, j=X-e, e=-Vo, (2.17)

where ¢ is the electrical potential, j and e are the current and the electrical fields,
respectively. The tensor X of the electrical conductivity of an isotropic material has
the form,

Y=ol (2.18)
where o is a conductivity constant of an isotropic media and I is the (2 x 2) unit
matrix.

The electrostatic energy density can be presented as a quadratic form in either
the electric field,

Wee)=e- X e, (2.19)
or the current field,

W) =4 -2 3. (2.20)
It will be convenient for us to characterize the electrical properties of the material by

the sum of energies that are stored in it under the action of two orthogonal electrical
fields e and e®:

We = W(eM) + We(e®). (2.21)
Such a functional reflects the properties of the medium in two linear independent di-
rections, and therefore characterizes the whole conductivity tensor of any anisotropic
composite, unlike the functionals (2.19) or (2.20) that depend only on the properties
of the medium in a fixed direction of the applied field. We may treat this sum as a
quadratic form of the matrix E = (e(Ye®):

Wi(E) = (eVe®) ("g g) (Zgi) . (2.22)

It is convenient to use the representation of this matrix in the basis similar to one
that we used in the elasticity problem, namely, in any fixed basis ¢, 7 we can treat
the pair (e(Me?) as the (2 x 2) matrix,

we@y_ (e e

(e € ) = (e(l) 6(2)> . (223)
2 2

In the basis (2.2) of (2 x 2) matrices, the quadratic form (2.22) can be written as

Wg(E)=E-%-E

E\" [ 3+ ) 5(A = A) 0 0 £y
_ | B (= 2A2) (0 + Ao 0 0 E, (2.24)
Es 0 0 sOr+X) sa—=X) | | Bs )
E4 0 0 s —X2) (A + X2 Ey
where
E,=E:a; = ﬁ(egl) +ef), E;=E:ay= ﬁ(ei” -, (2.25)
Es=FE:a3= %(e§1)+e§2)), E,=FE:a4= %(egm_e(lz)),

and \; and A, are the principal conductivities of the material whose eigenvectors
coincide with the directions of the vectors ¢ and j in (2.2). Henceforth, we use the
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252 L. V. Gibiansky and S. Torquato

schematic notation A - B for the matrix product of matrices A and B as in (2.24).
Relation (2.24) define the matrix X that we use later. For an isotropic material, the
matrix X in the basis (2.2) has a diagonal form,

c 0 0 O

- 0 ¢ 0 O

XY= 00 o 0l (2.26)
0 0 0 ¢

where o is the conductivity constant of this isotropic material.
Similarly, the sum of the energies stored by conducting material in a current fields
4 and @ can be written in the quadratic form

W,=J-X1'.J

J\T (O D 30 =AY 0 0 4
] B B0 ) 0 0 7
Js 0 0 LN +A2) s =) )
Ji 0 0 3O =23 ST A S e
(2.27)
where
J =G0, Ji=J:a, i=1234. (2.28)

(b) Homogenization

Let us consider a composite that is a double-periodic plane structure. The element
of periodicity {2 is divided into two parts {2, and (% with volume fractions f; and
fo = 1 — fi, respectively. Let us assume that these two parts are occupied by two
isotropic materials with the elastic moduli (K1, p1) and (K2, p2), and with the elec-
trical conductivities oy and os. It is desired to study the homogenization problem,
i.e. the problem of describing the medium’s effective properties. It is well known
(Beran 1968; Christensen 1979; Sanchez-Palencia 1980) that the average behaviour
of a mixture is described by the homogenized equations of elasticity,

(&) = 5(V(u) + (V{u)T), (r)=(n)", (r)=C.:(e), V-(r)=0, (2.29)
and of conductivity
(e) =-V(¢), (J)=2.-(e), V-(j)=0. (2.30)

Here the symbol ((.)) denotes averaging over the element of periodicity (2, i.e.

() = V;Q /9(') an. (2.31)

The tensor C\,, connecting the average stress and average strain, is by definition
the effective stiffness tensor, and the tensor X,, connecting the average current and
average electrical field is the effective conductivity tensor. The effective property
tensors C, and X, depend on the phase properties, phase volume fractions f; and
f2, and the geometrical structure of the composite, independent of the loading.

Remark 2.4. Note that any homogeneous composite is equivalent in respect to the
effective elasticity and conductivity tensors to some periodic structure. The assump-
tion of periodicity is not very restrictive; it is imposed only for the sake of simplicity
of description.
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Rigorous conductivity-elastic moduli bounds 253

The elastic energy density W* stored in the composite is known to be equal to

WX (ey) =€ :Cy: €= inf (e:C :é€), (2.32)
e:(e)=€g
e=(Vu+(Vu)T)/2

where infimum is taken over all admissible fields € = (Vu -+ (Vu)T)/2 that are the
strain fields with given mean value €, that satisfy compatibility conditions (Atkin &
Fox 1990; Willis 1981). For the conjugate functional of the complementary energy
(Atkin & Fox 1990; Willis 1981) we have

W (r)=70:8.:70 = inf (r:8:7), (2.33)
T{T)=T0
7'=‘1'T7 Ver=0
where the effective compliance tensor S, is determined as S, = C ! and infimum is
taken over stress fields with given mean value 1y that satisfy equilibrium conditions
V-T=0.
The electrostatic energy density of the composite is known to be a quadratic form
in the electrical field, i.e.

Wi(eg) =€y X -€o= inf (e-X-e) (2.34)
e:(e)=eg
e=—V¢

(Dirichlet variational principle (see Beran 1968)), or the curent field,
Wi (jo) =jo E.'-jo= inf (j-XZ7'-j) (2.35)
J:{d)=3o
V-j=0
(Thomson variational principle (see Beran 1968)). For the conductivity problem we

use the functionals that are the sums of the energy stored by the composite in two
trial fields, like (2.24) and (2.27), namely,

Wi(E)) =Ey- %, Ey = inf (E-%-E), (2.36)
E:(E)=Ey
E=-v(s",¢)
and
WiJo) =Jdo- 27 - Jo= inf (J-Z7'-J), (2.37)
J:{(J)=Jo
V.J=0

where the tensor X, is defined similar to (2.24).

3. The translation method

To prove our cross-property bounds we will use the translation method (see Lurie
& Cherkaev 1984a, b, 1986a,b; Murat & Tartar 1985; Tartar 1985; Kohn & Strang
1986; Cherkaev & Gibiansky 1984, 1987, 1992, 1993; Francfort & Murat 1986; Milton
1990q, b; Gibiansky & Milton 1993). The method is based on bounding from below
the relevant energy functional I that for the problem under study has the general
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form

I= ZW*(e(” + W (Eo) (3.1)

(see relations (2.32)—(2.33), (2.36)7(2.37)). This functional is equal to the sum of
the values of elastic and electrical energy stored in the element of periodicity of a
composite which is exposed to N elastic fields and two electrical fields with fixed
mean values. Here N = 1 for the bulk modulus bounds and N = 2 for the shear
modulus bounds. Note that the energy can be treated also in terms of the stress
and the current fields for the elastic and electrical parts of the functional (3.1),
respectively. The energy functional is used because its value is equal to the energy
stored by an equivalent homogeneous medium in the uniform field. The equivalent
medium is characterized by the tensor of the effective properties and the uniform
external field coincides with the mean value of the field in the composite. Clearly,
the lower bound on the functional (3.1) provides bounds on the effective moduli of
interest.

(a) Functionals

We discuss now the functionals that yield our cross-property bounds and specify
the functionals of the type (3.1) which attain minimal values at the boundary of the
set of pairs (0., k«) and (o, p«). We follow here the prescription of Cherkaev &
Gibiansky (1993).

It is instructive to begin with functionals for the pure elasticity and pure conduc-
tivity problems before presenting the cross-property bounds. To obtain bounds on the
bulk modulus, the composite is exposed to an external hydrostatic strain €, = €,a;
or stress 7, = 7pa; field. Indeed, the energy of an isotropic composite under the
action of these fields is proportional to the effective bulk modulus &, according to

Ie(Eh) = W:(Eh) = €p . C* L Ep = 25*(611)2, (32)

or to its inverse value 1/x, according to

L(mh) =Wl (mh) =T : Su iy = 21 (Tn)* (3.3)

(see relations (2.9) and (2.12)). The minimization (by changing the microstructure)
of the energy stored in the the hydrostatic strain field (i.e. the functional (3.2)) is
equivalent to the minimization of the bulk modulus. By contrast the minimization of
the energy stored in the hydrostatic stress field (see (3.3)) leads to maximization of
this modulus. As we will see further, we need to express the elastic energy in terms
of ¢ (gradient of the displacement vector) instead of the strain fields e, i.e.

Ie(eh) = IC(Ch) = Ch : Ci : Cha (34)

where we assume that €, : a; = ¢, 1 a;, 1 =1,2,3.
By using the same argument, it is clear if E = E; = Eja, then the minimization
of the functional

Ig(Ey) = Wi(Ey) = Ey - 5 Ey, = 0.(Ep)? (3.5)
is equivalent to the minimization of the effective conductivity constant o, of an
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al®

Figure 3. Directions opposite to the gradients of various functionals described in the text. For
example, v represents the direction opposite to the gradient of the functional I.z; —E? and
—€2 are the components of the vector v in the 0. and k. directions. The ellipse demarcates
schematically the boundary of the set of the admissible pairs (o« k).

isotropic composite. If J = J;, = J,a; then the minimization of the functional
. o 1
IJ(Jh) = WJ(Jh) = Jh ) 1 H Jh = O_—(Jh)2 (36)

is equivalent to maximization of the effective conductivity constant.

In order to get conductivity-bulk modulus bounds, we combine the functionals
mentioned above. We have a choice between stress and strain trial fields for the
elasticity problem, and between the electrical and current fields for the electrostatic
problem. The following functionals should be considered for the conductivity-bulk
modulus bounds:

Iep(Chy En) = WE(Ch) + WE(ES), (3.7)
1eg(Cny JIn) = WE(Cn) + W3 (Jn), (3.8)
Lg(mh, Ey) = WX(7) + WE(E4), (3.9)
Ly (thy In) = WX (1h) + W3 (Jp). (3.10)

The lower bound of each of these functionals gives some component of the boundary.
This is illustrated in the figure 3 where the directions opposite to the gradients of all
of these functionals are shown in the conductivity-bulk modulus plane o,—«,. Let us
assume that we start with some microstructure that possesses the effective properties
(04, k+) and we place the origin of the plane at this point. If one changes the mi-
crostructure with the aim to decrease the energy W (¢r), one moves vertically down
in this plane, corresponding to a lower k. Decrea,smg the energy W*(73,) allows one
to move vertically up in this plane, corresponding to the larger k.. Similarly, the min-
imization of the functional Wg(E}) moves one horizontally to the left, corresponding
to a lower o,; minimization of the functional W;(J},) moves one horizontally to the
right in this plane, corresponding to a larger o..

By using linear combinations (3.7)—(3.10) of the four functionals (3.2), (3.3) and
(3.5), (3.6), one can find the functional that moves one in any fixed direction in the
0.~k plane. Therefore, by bounding the functionals (3.7)—(3.10) from below one can
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find bounds on the set of pairs of the values (0., k.) of composites of all possible
microstructures. For example, consider the functional (3.7). For any fixed amplitudes
E, and €y, the bounds on the functional (3.7) show how far one can move in the
direction v = —E?i—¢}j where 7 and j are the unit vectors of the o,-axis and k.-axis,
respectively (see figure 3). By changing the ratio E? /€7 one can direct v at any point
within the third quadrant of the o,—«. plane. This means that the functional (3.7)
can provide the part of the cross-property boundary having a normal directed into
the third quadrant (like (C'D) in figure 3). Similarly, the functional (3.8) provides
the part of the boundary having a normal directed into the second quadrant of the
plane o,—#. (like (DA) in figure 3), the functional (3.9) corresponds to the part of
the boundary having a normal directed into the fourth quadrant of the plane (o, k.)
(like (BC) in figure 3), and the functional (3.10) provides the part of the boundary
having a normal directed into the first quadrant of the plane (0., k.) (like (AB) in
figure 3).

In a similar manner, one can get bounds on the shear modulus of a composite
by bounding the energy stored in a composite exposed to shear-type trial strain or
stress fields €, = €;a; or 74 = T,a4, i.e.

I(es) =W (es) =€5:C, : €, (3.11)
or

(1) =Wi(1s) =75 : Su 1 Ts. (3.12)
In this way we obtain bounds on any of the two shear moduli of the mixture which
is anisotropic in general. To ensure isotropy of the mixture, one need consider the
reaction of the composite to two orthogonal shear fields. Hence to estimate the shear

modulus of an isotropic composite we should minimize the functional equal to the

sum of the values of the energy stored by the medium under the action of two trial

orthogonal shear strain or stress fields e = eVa, 22) =cPay , Or ) = 7MW, 2

’Ts( ) = TS<2)0/;, i.e.

Lee(elV, €)= W (V) + We ()
=M C, e +e?:C, € =20 (V) + ()Y (3.13)
(see (2.9)), or
L (v, 72) = Wi (D) + W (%)

1
21
(see (2.12)). The functional (3.13) can be reexpressed in terms of ¢ as in the relation
(3.4), i.e

Le(e, €)= Iee (¢, ¢P) = ¢ €L ¢ +¢P €L ¢ = 20, (V) + (P >2>,

=M. 8, 7MW 4@ 8, . 7® =

S

(T + (7)) (3.14)

where egl) ta; = §1) :a;, and 6£2) ra; = ng) ra;,1=1,2,3.

Hence, in order to find conductivity-shear modulus bounds, we study the following
functionals:

Iecp (S, ¢ Bn) = WE(CY) + WE () + WE(En), (3.16)
Iees (60, ¢ Jn) = W (CD) + WECE) + W3 (), (3.17)
Phil. Trans. R. Soc. Lond. A (1995)
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Rigorous conductivity-elastic moduli bounds 257
Lp(rD, 7 Ey) = Wi (D) + Wi () + Wi(E), (3.18)
Ly (v, 73 00) = Wi (r D) + W (7)) + W (). (3.19)

The lower bound on each of these functionals gives some component of the boundary
as was explained above for the conductivity-bulk modulus bounds.

(b) Translation bounds

First, note that each of the functionals described above is a quadratic form of the
elastic and electrical fields and can be represented in the form,

I=e D, e,= inf (e D(z)-e), (3.20)
e:(e)=eop,
ecEK

where infimum is taken over fields e with given mean value ey such that
e € EK. (3.21)

Here e is a vector composed of the coefficients of tensors of gradients ¢ or stresses T
and matrices E or J in the basis (2.2). The set EK is a set of doubly periodic vectors
that satisfy some differential restrictions. For the components of stress tensor, these
restrictions are given by the equilibrium equations V - 7 = 0, while for gradients one
has ¢ = Vu. For the matrix E = V(¢1, ¢2) of the electrical fields, these restrictions
guarantee the potential character of these fields, and for the pair of current fields J
they are given by the conditions V - J = 0. The matrix D is a piecewise constant
block diagonal matrix composed of the coefficients of the material tensors in the
aforementioned basis (2.2).

For example, the matrix D, the vector e, and the set FK for the functional
I:g(¢, E) have the form,

D =D = <% g) (3.22)

e=I[(,El=[:a,(: a2 a3,(:a4),(E:a,E:a,FE:a3 E:ay),
EK:{BZCZVU, E=v(¢l7¢2)}7

(3.23)

where the matrices C’ and X are given by relations (2.16) and (2.24), respectively.

The translation method allows one to take into account the integral corollaries

of the linear differential restrictions (3.21). Namely, given (3.21), it is possible to

find so called quasi-convez (see Dacorogna (1982) and references therein) quadratic
functions of the fields e

ple)=e-T-e (3.24)
possessing the property of convex functions
(¢(e)) = o((e)) (3.25)

for every field e € EK. Here T is the so called translation matrix which is a constant
matrix. Of course, any positive-definite matrix is a matrix of quasi-convex (even
convex) quadratic form. However, under the restrictions (3.21), it is possible to find
non-positively defined matrices T such that the associated quadratic form possesses
the quasi-convexity property (3.25). Explicit forms of these matrices depend on the
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differential restrictions (3.21). These matrices can depend on several free parameters.
If the inequality in the expression (3.25) is valid as an equality for any field e € FK,
such a function behaves as an affine function and is called quasi-affine. For the
problem under study (i.e. for the stress and strain fields and gradient of vector
potential), such quasi-affine bilinear and quadratic functions were studied in detail
by Cherkaev & Gibiansky (1993). Let us now describe how to use these quasi-affine
function in order to get sharp bounds on the effective properties. We follow here the
description of Milton (1990b).
Consider a two-phase composite with the local constitutive relation

i(x) = D(z) - e()

at a point «. Here j is a generalized ‘flux’, e is a generalized ‘gradient’, and D is
some local property, generally a tensor, equal to DD; in phase 1 and Dy in phase
2. For example, in the pure conduction (elasticity) problem, j, e and D represent
the current (stress), electric field (strain), and conductivity tensor (stiffness tensor),
respectively. In the present problem, D is actually a ‘supertensor’ (e.g. see (3.22))
as discussed below. The effective tensor D, is defined by the relation,

<J> = D* : <€>,
or equivalently by the averaged energy expression
(e-D-e)=(e) D,-(e),

where e and j is the solution of the corresponding system of differential equations
for the medium with the properties D(zx). It can be alternatively defined by the

variational principle
e-D.-eg= inf (e -D(x)-e). (3.26)

e:(e)=eo,
ecEK
Now consider a ‘comparison’ medium with local property tensor

D'(x) =D(z) - T, (3.27)

where T is a constant translation tensor chosen in such a way that (i) D’ is positive
semi-definite and (ii) the quadratic form associated with T is quasi-convez.
The effective properties of such medium can be defined via
eo-D,-eg= inf (e-(D(z)-T)-e) (3.28)
e:(e)=eop,
ecEK

(cf. with (3.26)). Let €'(x) be a solution of the variational problem (3.26) and let us
use this field as a trial field for the variational problem (3.28). This yields

inf (e (D(x)-T)e) < (e"D(x)e)—(eTe€)<eyD.e—eyT e (3.29)
e:(e)=eq,
ecEK

where we took into account of the quasi-convexity of the quadratic form with the
matrix T' and the equation (3.26) that is an equality for the field e = e’. Hence, the
effective properties of the comparison and original media are related by

D.-T>D.. (3.30)
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Now use of the well-known harmonic mean bound (Christensen 1979) yields

(D.=T) 2D, 2 [fi(Di—T)™" + fo(Dy = T)™ '], (3.31)
or
(D, —T)"' < AD, —T) ™ + fo(Dy - T)7H, (3.32)
that is true for any matrix T of a quasi-convex quadratic form such that
D(z)-T >0 forany . (3.33)

For two-phase composites, the restriction (3.33) means
D, -T>0, Dy—T>0. (3.34)

Equation (3.32) is the basic inequality of the translation method. In fact, it is valid
for any number of phases when written in a form

(D. = T)7' <{(D(x) = T)7"), (3.35)

where T is subjected to (3.33). The essential point is that one wants to choose T
so as to optimize the bound, to make it as restrictive as possible for the effective
property tensor D.,.

One can transform the bounds by using the so-called Y-transformation (Milton
1991; Cherkaev & Gibiansky 1992)

Y (D, Dy, f1, D.) = — f2D1— fiDa— f1 fo(D1—Ds)-(Ds— fi D1~ fo D3) ~'-(D1—Dy).

(3.36)

Henceforth, we will omit the first three arguments of the Y-transformation and

will denote it simply as Y (D). If the matrix (D; — D) is not degenerate, then the

bound (3.32) can be presented in a surprisingly simple form (Milton 1991; Cherkaev
& Gibiansky 1992)

Y(D.,)+T > 0. (3.37)

Note that the bounds (3.37) in terms of the Y-transformations do not depend on the
volume fraction. All volume-fraction information is ‘hidden’ in the definition of the
Y -transformation.

Remark 3.1. Note also some of the remarkable properties of this transformation

Y (Dy, Dy, f1,D;) = -D;, i=1,2,
Y(D1_17D2—17 1>D_1) = Y_l(DlaD%fl)D*)a

*

(3.38)

that we will use in order to transform the bounds.
We use the scalar corollary of the matrix inequality (3.37), namely,
det[Y(D.)+T)] > 0. (3.39)

The parameters of the symmetric matrix T" should be chosen in order to make the
bounds (3.39) the most restrictive ones.

In the problem under study, the matrix Dy — Dy may be degenerate, i.e. some of
the eigenvectors and eigenvalues of the matrices Dy and Dy coincide. Indeed, for any
material, the stiffness matrix C’ has one eigenvalue equal to zero (see (2.16)). The
matrix C’ is in turn the diagonal block of matrices D used in the functionals (3.7)-
(3.8), and (3.16)-(3.17). One can find the appropriate form of the bounds (3.32) for
this case as well (Cherkaev & Gibiansky 1993) but here we will not go into details.

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

\

\

%A

A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I \\
\
) \

/

A
(

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

260 L. V. Gibiansky and S. Torquato

As we will see, in our problem all of the matrices in the matrix inequality (3.37) are
block-diagonal if the component materials and the composite are isotropic which is
the case. For the block of this matrix that gives the bounds the differences Dy — Dy
is not degenerate and we can use the bound in the form (3.37).

(¢) Quasi-affine functions

In order to use the translation method to obtain cross-property bounds, we need to
find the set of bilinear quasi-affine functions of vectors which possess elements that
are the components of various combinations of stress, strain, current or electrical
fields. We follow here the procedure described by Cherkaev & Gibiansky (1993). The
details of the procedure for the problem at hand are given there, and hence we only
summarize the results below.

Specifically, one can show that for any choice of the parameters t1, to, t3, t4:

(i) The functions

dec(CW,¢P) = ¢ s Bec(ta, b, 3, 1) : (P, (3.40)

ppp(EV,E@) = EWV . & (t),ts,t5,t4) : E?@, (3.41)

dpc(E,¢) = E : Dec(ty, ta, s, ts) : ¢, (3.42)

are quasi-affine if the fourth-order tensor @, is represented in the basis a1, ..., a4

(see (2.2)) as follows:

t ta  t3 Uy
—ta —t1 ty i3
—t3 —ty —t1 —to
-ty —t3 13 t

@Cg(tl,tg,tg,,bl) = (343)
(ii) The function
Gy (JV, TD) = JO - B (ty, ty, ts,ty) : JP (3.44)
is quasi-affine if the tensor @ of the quadratic form ¢;;(J®, JM)) is given by

ty  —ty —t3 ity
ty  —t, t, —t

Dyt to,ts,t) = s —t, —t (3.45)
-ty tz3 —ta t
(iii) The functions
¢J§(J7C) :J:QJC(tthat?ntél) :C (346)
and
(f)JE(J,E) —-_—J:¢J((t1,t2,t3,t4> - E (347)
are quasi-affine if
t1 to ts3 ty
t t —t4 -t
Dc(ti,ta, t3,ts) = ti tj; t14 t23 (3.48)
—t4 —t3 o t1
(iv) The function
G (7D, 7Y =7V o B (1, 1,,t5) : 72 (3.49)

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

1\

\

%A

I

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

AN
\
) \

/

A
(

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Rigorous conductivity-elastic moduli bounds 261
is quasi-affine if
t1 —ty —i3
@TT(tl,tg,tg,) = tz —1 t4 ) . (350)
ty —ty —t
(v) The function
Grg (T, J) =7 : P y(tr,ta,t3) : J (3.51)
is quasi-affine if
tih —ta —t3 14
Dty ta,ts,ts) = (tg —t1 14 —t3> . (3.52)
ts —ty —t, to
(vi) The function
¢1’E‘ =T @TE(tl,tg,tg) - FE (353)
is quasi-affine if
toty ts  ty
D p(t,to,t3,ty) = <t2 t, —t4 —t3> . (3.54)
ts ty ot to

Hence, we have all of the necessary quasi-affine combinations. In §§4 and 5 we use
them in order to prove the bounds of §1.

4. Coupled conductivity-bulk modulus bounds

Here we prove the conductivity-bulk modulus bounds stated in § 1 (statement 1.1)
by using the aforementioned translation method. We describe in detail the bounds on
the functional I.z(€ex, Ey) and the corresponding bounds on the effective properties of
the composite. The other functionals can be analysed in a very similar way and hence
we omit these details of the proof. As will be seen, we will need to prove the bounds
separately for two cases depending on the sign of the expression (o7 — 02) (11 — t2).
In this section we call the pair of the materials ‘well-ordered’ if

(o1 — 02) (11 — p2) 20, (4.1)
in contrast to ‘badly ordered’ materials that satisfy the relation
(01— a2)(1 — p2) < 0. (4.2)

These definitions should not be confused with the commonly used ones that involve
the bulk and shear moduli, and with ones used in §5 that involve the conductivity
and bulk modulus.

(a) Badly ordered materials
Let us assume that the phase properties satisfy relation (4.2) and begin with

analysis of the bounds on the functional I.g(en, Ep). As mentioned earlier, it can be
written in the quadratic form

IeE(Ehth) = €p C* H €h+Eh H 2* : Eh = Ch : Ci : Ch+Eh H 2* : Eh = eo'DiE'eo,

(4.3)
where the vector e and the matrix of ‘supertensor’ D, = DtF are defined by the
relations (3.22)—(3.23). The translation matrix T°¥ can be represented in a block
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262 L. V. Gibiansky and S. Torquato
form as
Dee(—11,0,0,0)  Dee(—t3,0,0,0)
eE 49 1, Yy Yy ¢¢ 3,U,U,
- : 4.
g (éCCT(_t?nO,OaO) ‘ng(—tQ,0,0,0) ( 4)

Here we take many of the parameters to be equal to zero. One can check that addi-

tional free parameters can not improve the bound. As follows from the representation

(3.23) for the vector e and from the relations (3.40)—(3.42), the quadratic form,
Yep=e-TF e (4.5)

is quasi-affine for any choice of the parameters ¢, to, t3. Therefore the bound can be
written in the form

Y(DF)+TF >0 (4.6)
where the parameters 1, to, t3 satisfy the relations
DfE _ TeE
2k; + 1 0 0 0 t3 0 0 0
0 2/.1,1 - tl 0 0 0 —t3 0 0
0 0 2/,1,1 - tl 0 0 0 —t3 0
_ 0 0 0 ty 0 0 0 t3
- t3 0 0 0 o; + t2 0 0 0
0 —t3 0 0 0 g —ty 0 0
0 0 —t3 0 0 0 g; — tg 0
0 0 0 —t3 0 0 0 o; +ta

>0, i=1,2. (4.7)
One can see that the matrix in the inequality (4.7) is a block-matrix composed of
four (2 x 2) blocks, namely

DF —TF = AP @ A & AP @ A}® (4.8)

Here AP is a submatrix of the matrix A; = D — T<F that is composed from the
elements that are the intersections of the columns with numbers £ and | and the
rows with the same numbers, i.e.

15 [ 2K+t t3 26 _ 437 _ [ 21—t —t3
Ai o ( t3 ag; + tg) ’ AZ - Ai - < —t3 g; — tg ’

t t
Afl,g — 1 3 )
v <t3 ag; + tz

Obviously, each block is non-negative if the whole matrix is non-negative, and there-
fore we arrive at the following restrictions on the parameters t1, to, t3:

(4.9)

det A}® = (2k; +t1)(0s +t2) —t2 >0, i=1,2, (4.10)
det A2® = det A>7 = (2u; — t1)(0s —ta) — 2 20, i=1,2, (4.11)
det A}® =t)(0s +t) —2>0, i=1,2. (4.12)

The left-hand side of the inequality (4.6) for any isotropic composite is also a block
matrix; the bound that we seek comes from the first block of this matrix:

[Y(D$E> _ TeE]l,s _ (21/(%—*23— tq y(g*—)t:a_ t2> > 0. (4.13)
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40.0
©,=6, 6,=39,
k=35, k=10,
200 | 30,

-20.0 | Q

Y-tansformation of bulk modulus, y(k.)

T

(-0,—k,) o

-40.0 -20.0 0.0 20.0 40.0
Y-transformation of conductivity, y(c,)

Figure 4. The set 27 in the y(o.)-y(k«) plane. This set contains the indicated points as
described in the text.

Here y(k,) is the Y-transformation of the effective bulk modulus, namely,

fifa(k1 — Kg)?
Ry — flhjl - f2/{’2
and y(o.) is the Y-transformation of the effective conductivity. The determinant of

the matrix of the left-hand side of (4.13) should be non-negative, and hence, we find
the bound

Y(ks) = —fike — fak1 — (4.14)

det[Y (DSF) = TP = (2y(x.) — 1) (y(ow) —t2) ~ 32 0. (4.15)

Now we want to find the best choice of the parameters (subject to the restrictions
(4.10)-(4.12)) in order to optimize the bound (4.15). We use here the geometrical
interpretation of the translation bounds that was suggested by Gibiansky & Milton
(1993). Let us denote as Qr the set of the pairs (0., k.) that satisfy the relationship
(4.15) for some matrix T, i.e. for fixed values of the parameters (¢1,ts,t3) (figure 4).

The bounds of this set are defined by the hyperbola (4.15), its position uniquely
defined by the parameters (¢,t2,t2) of the translation matrix T¢F. Changing the
parameters (t1,t,t3) is equivalent to moving and resizing the set 7. Note that the
coefficient in front of the ‘main’ (bilinear) term y(o.) - y(k.) of this hyperbola is
positive. The conditions (4.10) are equivalent to saying that the points (—o;, —k;),
i = 1,2 belong to the set Qp (cf. (4.10) and (4.15)). From (4.11) it is follows that
(04, i) € Q for i = 1,2. The conditions (4.12) mean that (—0o;,0) € Qr for i = 1, 2.
These are the only restrictions on the set of the parameters (t,t2,t3), i.e. on the
position and the size of the set Q7. Hence, any pair (y(o.),y(k«)) of a composite
should belong to the intersection of all the sets 1 that contain the points (—a;, 0),
i = 1,2, the points (—oy, —k;), i = 1,2 and the points (o;, i;), ¢ = 1,2. One can
check that the conditions (4.12) are more restrictive than (4.10).

In summary, there exists a one-to-one correspondence between the triples of the
parameters (t1,ts,t2) and the hyperbolas with positive coefficient in front of the term
y(0.)y(k«) in the y(o.)-y(k«) plane. By changing these parameters one can move
and deform the hyperbola in that plane. The parameters have to be chosen so that
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264 L. V. Gibiansky and S. Torquato

all of the aforementioned points lie inside the set Qr and make the bound (4.15) the
most restrictive one. Analysis of the bounds (4.15) and restrictions (4.10)—(4.12) for
any composite with badly ordered phases leads to the following bounds (see figure 4):

Statement 4.1. The lower bound on the set of pairs (y(c.),y(k«)) in the plane
y(o.)—y(k4) is given by the lowest of the two hyperbolas

Hyp[(o1, 1), (02, p2), (—01,0)],  Hyp[(o1, p1), (02, p12), (=02, 0)].

Remark 4.1. Condition (4.2) guarantees the existence of the parameters t;, t,
t3 such that the bounding hyperbola with the positive coefficient in front of the
bilinear term passes through the points (o1, u1), (02, t2), simultaneously. In this
case the conditions (4.1), i = 1,2, are equalities and define two equations for the
three parameters t, to, t3. The strongest one among the conditions (4.12) defines
the third equality that allows one to define all of the coefficients. One can analyse the
conditions (4.12) in order to find the strongest one. For example, it is clear that the
inequality (4.12) with ¢ = 1 is stronger then (4.12) with ¢ = 2 if oy < 0,. However,
we avoid such analyses and use the bounds in the form described above.

Let us now examine the functional that is conjugate to the functional I.g(en, Ey),
namely,
~ —1

Ly dh) =7 St +Jp: Xs 2 ) (4.16)
It can be written in the quadratic form,
Ly (Th, Jn) = eo - D]7 - e, (4.17)

where ey = (ep) is seven-dimensional vector composed of the components of the
stress field 7 and matrix of current fields J in the basis a,—a4 as

e=[r:a,7:ay,7:a3J:a,J:aJ: a3 J: a4 (4.18)

The matrix D77 has the block diagonal form,

S 0
TJ __ * o
D}’ = ( 0 X 1>. (4.19)
As follows from (3.45), (3.49), (3.51), the quadratic form
Y, y=€e-T7 e (4.20)

is quasi-affine, if the vector e is given by (4.18) and the matrix 77 is chosen to be
the block matrix in the form,

TJ _ ¢T7‘(_t17070?0) gp7'*]<mt3’O’O’O)
= <¢IJ(_t3707070) ngJ(—tQaO?O?O) ‘ (421)

For an isotropic composite with isotropic phases, the bounds (3.37) and the restric-
tions (3.34) are written as follows:

Y (DI +T™ >0 (4.22)
when
D7 -1 >0. (4.23)
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Rigorous conductivity-elastic moduli bounds 265

Here the matrices Y (D7) +T77 and D]’ —T"7 have a block structure and can be
written as a direct sum of subblocks,

Y(DI)+T = At e AP 9 A o AT, (4.24)
D7 T = A" e AP 0 A @ Al (4.25)

where we use the same notation for the matrices A" as a diagonal minors of the
corresponding matrices. The bounds come from the ‘main’ block,

det AL* = (y(1/2k.) — t1)(y(1/0.) — t2) — t5 = 0; (4.26)
the restrictions on the parameters t;, ts, t3 have the form,
det A = (1/2k; +t1)(1/os + 1) —t2 >0, i=1,2, (4.27)

det A2 = det A2® = (1/2u; — t1)(1/0s —t3) —t2 20, i=1,2. (4.28)

Let us define, in a manner similar as was done earlier, the set Qp as a set of pairs
(1/k«, 1/04) that satisfy the inequality (4.26) for some fixed values of the parameters
(t1,t2,t3). Conditions (4.27) mean that the points (—1/0;, —1/k;) belong to the set
Qr. Similarly, inequalities (4.28) require the points (1/0,1/p;) to lie inside the set
Q. The boundary of the set r is a hyperbola (defined by the equality of equation
(4.26)) with positive coefficient in front of the term 1/0, - 1/k, in the 1/0,—1/k.
plane. Changing the parameters t; is equivalent to moving and resizing the set Q.
In order to find the tightest bounds, one needs to find the intersections of all such
sets Qr that contain the points (1/0;,1/1;), (=1/0s, —1/k;), i = 1,2. The result for a
composite with badly ordered phases (see (4.2)) is given by the following statement:

Statement 4.2. The lower bound on the set of pairs (y(1/0.),y(1/k.)) in the
y(1/o.)—y(1/k.) plane is given by the lowest of the two hyperbolas

1 1 1 1 1 1
Hyp T T\ Ty T ) N T Ty T T )

o1 M 02 b2 g1 K1

1 1 1 1 1 1
wol(32) (5) (5]

o1 02 [ 02 K2

Note that due to the properties of Y-transformation, one has y(1/0,) = 1/y(o.)
and y(1/2k.) = 1/2y(k.). Therefore, hyperbolas in the y(1/0.)-y(1/k.) plane cor-

respond to hyperbolas in the y(o.)-y(k«) plane. Statement 4.2 can be reformulated
as follows:

Statement 4.3. The upper bound on the set of pairs (y(o.),y(k«)) in the plane
y(04)—y(k«) is given by the highest of the two hyperbolas

Hyp((0'1, /1'1)? (02a M2)a (_0'17 _Hl))v Hyp((olv ,Ul), (027 /1'2>7 (,_UQa _"12))'

It is now seen that the aforementioned statements 4.1 and 4.3 can be combined as
follows:

Statement 4.4. In order to find bounds on the set of pairs (y(o.),y(k4)) for any
composite with badly ordered phases, one should inscribe in the y(o.)-y(k.) plane
the four following segments of the hyperbolas:

Hyp((o1, p1), (02, p2), (=01, —k1)),  Hyp((o1, 1), (02, pi2), (=02, —K2)),
Phil. Trans. R. Soc. Lond. A (1995)
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Hyp((ala ,u'l)a (027 /1’2)7 (_017 0))? Hyp((ala ,u'l)a (02) /1,2), (_027 O))
The outermost two of these curves represent the required bounds.

Now we need to transform the bounds into the plane of the actual moduli, not their
Y -transformations. First we mention that Y-transformation is a fractional-linear
one. Therefore, hyperbolas in the y(o.)-y(k.) plane correspond to the hyperbolas
in the o,-k. plane. Any hyperbola can be defined by three points that it passes
through. Hence, in order to transform the results into the plane of actual moduli, we
need to study the correspondence between the characteristic points on the boundary
hyperbolas. We note that

Y(oi) =05, yloy) = =05, ylki) = pi,  y(Ki) = —ki, =127 y(0) = kp,

(4.29)

where the values 0., ki @ = 1,2 and k), are defined by the equations (1.4), (1.5),
and (1.8), respectively. Therefore, statement 4.4 is equivalent to the statement 1.1
in the specific case (4.2) of badly ordered materials.

(b) Well-ordered materials

The proof of the statement 1.1 for the composite of two well-ordered materials is
almost identical to the badly ordered case. Therefore, we omit most of the details
and only mention that the lower bound on bulk modulus follows from bounds on the
functional,

IFJ(Eh?Jh) = €p ! C* : 6h+Jh : 2'**1 . Jh = Ch, : Ci : C}L+Jh : 2:1 . Jh = eO‘DiJ'eO,
(4.30)
where

ep=1(e), e=[C:a,(:as:a3:a4,J:a,J asJ a3 J: a4, (4.31)

and

C! 0
eJ __ * R
D = ( 0 2;1). (4.32)
We should use the the quadratic form
. ®::(-t,0,0,0) Dcs(—t3,0,0,0)
T(I: 49 1, Yy Yy ¢J 3y Yy Uy ) 4.
(qsgj,(—tg,o,o,()) &, (—t5,0,0.0) (4.33)

Quasi-convexity of this form follows directly from the conditions (3.40), (3.45), and
(3.46). The result is given by the following statement:

Statement 4.5. The lower bound on the set of the pairs (y(1/0.),y(k.)) for any
composite with two well-ordered phases (see (4.1)) is given, in the y(1/0.)-y(k.)
plane, by the lowest of the two hyperbolas

Hyp[(1/o1, 1), ()09, pi2), (=1/01, —k1)],  Hyp[(1/o1, i), (1/02, pa), (—1/ 02, —K2)].

One can check that hyperbolas in the y(1/0.)-y(k.) plane correspond to the hy-
perbolas in the y(o.)-y(k.) plane. Therefore, we have following bound:

Statement 4.6. The lower bound on the set of the pairs (y(o.),y(k.)) for any
composite with two well-ordered phases (see (4.1)) is given, in the y(o.)-y(k.) plane,
by the lowest of the two hyperbolas

Hyp[(ol,ﬂl)v (0—2? ,U“Q)v (_Ula _Hl)]v Hyp[(()-l?/“)? (02? /12)7 (_027 _52)]'
Phil. Trans. R. Soc. Lond. A (1995)
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Rigorous conductivity-elastic moduli bounds 267

As can be seen, the above proof is almost identical to the proof for the badly
ordered case with the obvious interchange of the symbols o; and 1/0;. The upper
bound can be obtained in a similar manner by studying the functional I, g (7, Ep).
Combining lower and upper bounds we end up with the set of bounds in the y(o.)-
y(k«) plane that coincides with the statement 4.4 and equivalent to statement 1.1
for the well-ordered case. This completes the proof of statement 1.1.

5. Coupled conductivity-shear modulus bounds

Here we shall prove the new bounds that couple the effective conductivity with
the effective shear modulus of any isotropic, two-phase composite at fixed volume
fraction fi, i.e. statement 1.2. In this Section we call the materials well-ordered if
(01 — 02)(Kk1 — K2) = 0 and badly ordered if (o7 — 03)(k1 — K2) < 0.

(a) Badly ordered materials

(i) Lower bound

Let us first estimate the functional I¢¢g( W, §2), E},) which allows one to obtain

the coupled bound, as was mentioned above in §3. For this functional the vector e
is 12-dimensional vector with the components:

e; = Cgl) ca;, e =C?a;, esyi=FEiia;, i=1,234 (5.1)
The matrices DfCE, i = 1,2 and DS? have the following block-diagonal form:
c, 0 0 c. 0 0
D,;=D¢?=[0 C/ 0|, D.=D%=[0 C, 0]. (52
0 0 X 0o 0 X,

We use the translation matrix T¢¢F (¢, t,,t3,t4) with the block form,

¢CC(_t1707070) @44(070707 _t3) ¢CC(07 _t47070)
T¢F = | &8(0,0,0,—t3) Pcc(—1,0,0,0) Dcc(0,0,~t4,0) |, (5.3)
Q'(I‘(( 07 _t47070) (Pg((ovoa _t4,0) ¢CC(_t2707070)

where @, is defined by (3.40). The restrictions (3.34) have the form,
DSE B () by ta, t4) 20, i=1,2. (5.4)

We first mention that each of the matrices [D$” — T$¢F] (i = 1,2) can be written
as a sum of four blocks, namely,

DE B = ALBI0 g A2T9 g AB612 gy gS51 (5.5)

Again the matrix A>"° here denotes a diagonal minor of the matrix [D$” — T¢F];
it consists from elements standing on the intersection of lines and columns with
numbers a, b, c.

The matrices on the right-hand side of (5.5) have the following form:

26, +t1 i3 17 - 2 — by i3 —ty4
AP = ts t -ty |, A} = t3 2=t —ta ],

t4 —t4 g; — tg —t4 —t4 o; + t2
(5.6)
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2,“1 — tl —t3 —t4 tl _t3 t4
A?76’12 = —t3 2/1,z —t1 ty R A?’S’ll = —t3 2/@2' + 1 ty .
——t4 t4 o; + tg t4 t4 g; — t2
(5.7)
Parameters t; should satisfy the relations,
det A7 =det A% >0, i=1,2; (5.8)
det AV®10 = det A*>M >0, i=1,2. (5.9)

For the isotropic composite, the bound (3.37) becomes

det[Y (DSE) +TF)279 = [(y(0,) —t1)(2y(p) + b2 —ta) = 23] (2y (pa) +t2+ 1) = 0,

(5.10)
where
5 B1270 Qy(/t*) + t1 —t3 t4
[YSOF 4 TeCE2T9 = —t3 2y(s) + ts (5.11)
ty ty y(o.) — t

For any fixed values of the parameters t;, the condition (5.10) defines the set Qp
in the y(o,)-y(u.) plane that contains the pair (y(o.),y(p.)) for any composite.
The boundary of this set is a hyperbola in the y(o,)-y(p.) plane with a positive
coefficient in front of the main term y(o.) - y(u.). The conditions (5.8) are equivalent
to saying that this set Qr contains the points (—o;, —p;), i = 1,2.

Let us put the value of ¢4 as

ty = 2,umin —t2,  Mmin = min{,ula ,UQ} (512)

Then one can check that the conditions (5.9) require the set Qr to contain the points
(04, Kittmin/ (Ki + 2min)), ¢ = 1,2. Hence, there exists a one-to-one correspondence
between the parameters ti, to, t3, t4 = min — t2 and the position of the set {27 in
the y(o.)-y(u.)) plane such that: (i) the boundary of this set is a hyperbola that
is defined by the equation (5.10); (ii) this set contains the points (—o;, —k;) and
(Ui, K'i//'min/("@i + Qﬂmin))a 1= ]-a 2.

Changing the parameters t1, ta, t3 is equivalent to moving and resizing of the set
Qp. In order to find the most restrictive bounds one should find the intersection of all
such sets. For a composite with two badly ordered phases this leads to the following
lower bound:

Statement 5.1. The lower bound on the set of pairs (y(o.),y(u.)) is given, in
the y(o.)-y(u«) plane, by the lowest of the two hyperbolas

Hyp[(Uu Kl//'min/(ﬂl + Qﬂrnin))a (0-2, ”92,umin/("92 + 2,umin)), (_O—l, —/L})],

Hyp[(o1, K1 min/ (K1 + 2min)), (02, Kopimin/ (K2 + 2lmin)), (—02, —f2)],
in conjunction with the inequality y(o.) = oyin = min{oy, oa}.

(ii) The upper bound

To get the upper bound, we deal with the functional ITTJ(TS(I), ‘rs(l), Jr). The proof
of the upper bound is the same as for the lower bound. Here the vector e is equal to

e= {‘rs(l) ial,Ts(l)Iag,Ts(l) :a2,73(2):a1,7'8(2) :ag,‘rs(2) cag, J:a1,J:aq,J a3, J:a,}.
(5.13)
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Rigorous conductivity-elastic moduli bounds 269

The matrices D;, i = 1,2 have the block diagonal form,

S; 0 0
D, = D:TJ = 0 S, 9 ) , 1=1,2, (514)
0 0 X

the matrix T777 (¢, ts,t3,t4) is chosen in the following block form:

®,.(-t1,0,0,0) P,.(0,0,0,—t3) D.;(0,—14,0,0)
T = | #T(0,0,0,—t3) ®,.(—t,0,0,0) @,,(0,0,—ts,0) >
@IJ(Oa _t430 70) QIJ(O7O7 _t470) (PJJ(_tZaO)O)O)

As in the previous case, each of the (10 x 10) matrices D]™ —T777(t,,t,,t3,t4) can
be represented as a direct sum of four blocks,

(5.15)

DI — T (b, o, 15, 1) = AL® @ AZOT @ APP0 g AL (5.16)
where
18 aa90 [ 1/2ki+ 1t —t4

A" =A7 = ( —t4 1o, —t2 )’

1/2p; — ty ta tq (5:17)
0T = ts 12u —t, ty :
t4 t4 1/(71' + t2
1/2u; — ta —13 21
AP =ty 12u—t > : (5.18)
t4 —ty /o + t

The values of the four parameters ¢; of the translation matrix should satisfy the
equations:

det A}® = det A*® >0, i=1,2, (5.19)
det A2%7 = det A¥>'° >0, i=1,2. (5.20)

We obtain the upper bound from the inequality
YD) +T7 > 0. (5.21)

This matrix is divided into four uncoupled blocks (for isotropic composite); the most
restrictive bound comes from one of them, namely,

1/2y(pe) + ~t3 —t4
det[Y (DI™) + T7/]207 = det —t3 1/y(is) + t —t4 > 0.
—t4 —t4 1/y(0'*) — tg

(5.22)
For the fixed values of the parameters ¢;, this bound defines the set Q7 in the 1/y(o,)-
1/y(p) plane and its boundary is a hyperbola in this plane with positive coefficient
in front of the term 1/0, - 1/p.. Due to the restrictions (5.20), it contains the points
(=1/0i, —1/u;). Let us take

t4 = 1/2pfmax - t27 HMmax = max{,ul, ,u2} (523)

Then the conditions (5.19) are equivalent to the statement that the set Q1 contains
the points (1/0;,1/timax +2/ki), i = 1,2. In order to find the most restrictive bounds
we have to find the union of all such sets 7. Hence, the bound is given by the
following statement:
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270 L. V. Gibiansky and S. Torquato

Statement 5.2. The lower bound on the set of the pairs (1/y(o.),1/y(p.)) for
any composite with two badly ordered phases plane is given, in the 1/y(o.)-1/y(u.),
by the lowest of the two hyperbolas

Hyp[(l/ah 1/:U’max + Q/Hl)a (1/027 1/,Ulmax + 2/’%2)3 _(1/017 —'1/:‘431'),
Hyp[(]‘/al’ 1/#max + Q/Hl)a (1/02? 1/#max + 2/52)7 (_1/0-2? _1/’%2)]‘
in conjunction with the inequality y(1/0.) > 1/0max = min{1/0y,1/05}.

Hyperbolas in the 1/y(o.)-1/y(p.) plane correspond to hyperbolas in the y(o,)-
y(u«) plane. Therefore, statement 5.2 can be reformulated in the latter plane as
follows:

Statement 5.3. The upper bound on the set of pairs (y(o.), y(u.)) for any com-
posite with two badly ordered phases is given, in the y(o.)-y(u.) plane, by the
highest of the two hyperbolas

Hyp[(01? Kl/j'max/(/‘:l + Q,Umax))a (027 /432//'max/(/€2 + Q,Umax))a (“017 _,LLI)]a
Hyp[((ﬂ, K/l,umax//qfl + Q,Umax))a (027 K/2,“Jmax/("€2 + Qﬂmax))a (_U2v _/1'2)]7

in conjunction with the inequality the y(o.) < opax-

(iii) Summary of the results for the badly ordered case

By using statements 5.1 and 5.3 proved immediately above, one comes to the
following theorem that describes the bounds on the set of the pairs (y(o.),y(u.)) of
Y-transformations of the effective properties of the isotropic composite:

Statement 5.4. In order to find bounds on the set of pairs (y(o.),y(u«)) for any
composite with two badly ordered phases, one should inscribe in the y(o.)-y(u.)
plane the segments of the following four hyperbolas

Hyp[(01, K1 fbmin/ (K1 + 2tmin))s (02, K2 fomin/ (K2 + 2tmin)), (—01, — 1)),
Hyp|[(o1, K1 fmin/ (K1 + 2pmin)), (02, Kafimin/ (K2 + 2Hmin)), (—02, — )]
Hyp[(al, KLUmaX/(’Ql + QNIHaX)), (02, "Q2,Uma>c/(’€2 + Q/Lrnax»v ( )]7
Hyp[(o1, K1 ftmax/ (K1 + 24max)), (02, K2 pmax/ (K2 + 2fimax)), (=02, —p2)]

and two straight lines
y(O'*) =01, y(/"’*) S [Kllj'min/(/q'l + 2/1'min)a Kl/"'max/(ﬁl + 2,umax)]a

y(O'*) = 02, y(/},*) S ["@2lj'min/(/€2 + 2/4Lmin)a "92//'max/(/€2 + 2#max)]~
The outermost of these curves give the desired bounds.

In order to complete the proof of the statement 1.2 we just have to study the
correspondence between the o,—u, and y(o.)-y(u«) planes, as we similarly did for
the bulk modulus bounds. One can show that statement 5.4 in the y(o.)—y(u.) plane
is equivalent to the statement 1.2 in the o,—u, plane.

(b) Well-ordered materials

The procedure does not change in this case. It is as straightforward as for the
conductivity-bulk modulus bounds and thus we leave it to the interested reader to
check this case.
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Rigorous conductivity-elastic moduli bounds 271

6. Applications and discussion

In this section we apply the cross-property bounds given in §1 (statements 1.1
and 1.2) to some special limiting cases of the phase properties as well as to specific
microgeometries, including regular and random arrays of circular cylinders, hierar-
chical geometries corresponding to effective-medium theories, and checkerboard-type
models.

(a) Equal phase moduli

First consider the case of a composite possessing equal shear moduli p; = ps = p.
This is a trivial instance because both effective elastic moduli do not depend on the
microstructure (see, for example, Christensen 1979) and therefore are not connected
with the effective conductivity of the composite.

Let us now consider composites having equal bulk moduli kK, = k3 = k. All com-
posites possess the same effective bulk modulus k., = k, independent of the structure
(also see Christensen 1979), and hence k. is not connected to the effective conduc-
tivity. As follows from the expressions (1.6), (1.7), 1. = p3« and pios = 4. in this
case. In the o,—p, plane, the trapezium degenerates into a rectangle o, € 014, 02.],
Wy € [f14, 2«], bounded by the Hashin—Shtrikman points. Therefore, we again find
no connection between the effective shear modulus and the effective conductivity.

(b) Superrigid, superconducting phase

Let assume that one of the phases is superrigid and superconducting, i.e. kKo/Kk1 =
00, Ma/p1 = 00, and oy/0y = oo. The boundary hyperbolas in this extreme case
degenerate into straight lines and the bounds for fixed f; =1 — f5 simply as:

K1+ 1 2K 1o ] (00 — 0%) (6.1)
* 1%/ .

201 (ko + p2)o2

. =055, mﬁgm*gmfi—i—max{

K1+ 21 Ka o
4oy (Ko + p2)o2

ru 0%, U+ | [.—a 62

where
1 1 202 2
o=t lg e Tl e (R S)mm SR e Sam t B
fi f1 fi(k1 +2p1) 2f1

(6.3)
Note that the lower bounds on the elastic moduli are independent of the conductivity
and coincide with the corresponding Hashin—Shtrikman lower bounds. As easily fol-
lows from the equations (6.1)—(6.2), for arbitrary f; = 1 — fs, the following relations
hold:

K1+ p 2Kafho
* = 9 < * < 9 * 9 64
0w =01, K1 < Ky < K1+ max [ Gy e M2)02] (0x —01) (6.4)
K1+ 240 Koo
. > o, <, < , . —01). €5
0w 201, M1 < s < Q1 + max [ s (o + )0 (0. —01) (C.5)

At first glance it appears odd that the bounds can depend on the ratio of the infinite
moduli of the ideal phase. This occurs because a very small amount (volume fraction
fa of order 1/k, or 1/09) of a very rigid, conducting material can yield finite effective
properties.

The upper bounds defined by each of these equations represent straight lines whose
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272 L. V. Gibiansky and S. Torquato

slopes depend on the ratios of the quantities under the maximum operation. The
lower bounds are trivial and coincide with Hashin—Shtrikman bounds for &,. These
bounds are optimal because there exist composites (namely, polycrystals made from
laminate composites) that possess finite k, but infinite o,. The upper bounds are
also optimal since they correspond to singly coated-circle assemblages (bound (6.4))
or doubly coated-circle assemblages (bound (6.1)) having an outermost concentric
shell composed of the phase that determine the slope of the bound. The attainability
of the upper bound on p, is still an open question.

(¢) Perfectly insulating void phase
Let us now assume that one of the phases is composed of voids, i.e. ko/k1 =
0, pe/p1 = 0, 02/or = 0. It is convenient to present the results in the inverse
coordinates, i.e. in the 1/0,~1/k, and 1/0,~1/p. planes. For a fixed volume fraction,
the bounds simply as

1 1 1 1 . (Rl +,LL1)O’1 20’2 1 1
— > ">T+mm[ — =5 | (6.6)

o. 0% ke K] 2k1i1 Ko+ po| \ o« oY,
1 1 1 1 . K1+ p1)o 40 1 1
- > 5 —_— 2 0 —+ min I:( ! /1,1) 1, 2 jl <— - —0> y (67)
O« O1x ok Hix K1f1 Ko + 2/1'2 T« O1x
where
1 _ 1+ f2 L _ n1 + fglﬁll 1 _ (]. + fg)lﬁl + 2f2,u1 (6 8)
oY, fion T K, ik 7. fikip ‘ '
For arbitrary volume fractions, the bounds are given by
1 1 1 1 2 1 1
L R N _+min|:(’€1+/1ll)0'1’ o) ] ___>, 6.9)
o o1 Ky K1 2K1 41 Ko + o . 0
1 1 1 -1 ) K1+ o 4o 1 1
— =2 —, —>—+mln[(1 ,LL1)1’ 2 }(———) (6.10)
O« 01 e K1t Ko+ 22| \0x 01

The bounds on k, are also optimal for reasons similar to previous case. All lower
bounds are trivial and realizable by some polycrystal constructions.
Inequalities (6.6)—(6.7) and (6.9)—(6.10) lead to the following bounds on the Young
modulus F,
1 1 1 1 o1 < 1 1

—2— =2 to |-~ Hh=1-fiisk ; )
o. oo K. Eo+2E1 O 01> if f1 fa is known (6.11)

V

111 1
1.1 > L o <_—i>, for all fi, (6.12)

o. . o0 E. T E + 28, \o,. o1
where E, = 4k, s/ (K« + pis), B1 = 4dk1p1/(k1+ 1), Eo = f1E1/(142f2), and where
we have assumed that phase 1 defines the slope of the bound.

Can our cross-property relations enable us to relate critical exponents for elastic-
ity and conductivity near the percolation thresholds in the aforementioned extreme
instances? Torquato (1992) used bounds (1.1) and (1.2) to show that the critical
exponents for elasticity must always be greater than or equal to the critical expo-
nent for conductivity near the connectivity threshold of a composite with a perfectly
insulating void phase. Our new bounds cannot improve upon these results.
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15.0
G,/C =K,/K =00
W /K =p,/K,=0.4
1001 Newbounds
° Data

o
S}

Dimensionless bulk modulus, x,/x,

0.0
0.0 0.2 0.4 0.6 0.8

Volume fraction, f,

Figure 5. Comparison of the cross-property bounds on the bulk modulus (solid curves) with exact
bulk modulus data by Eischen & Torquato (1993) (circles) for a superrigid, superconducting
hexagonal array of circular inclusions. The bounds of statement 1.1 are calculated using exact
conductivity data by Perrins et al. (1979).

(d) Hezagonal and random arrays of cylinders

How sharp are our cross-property estimates given an exact determination of one
of the effective properties? To examine this question we employ exact results ob-
tained by Perrins et al. (1979) for the effective conductivity and results obtained by
Eischen & Torquato (1993) for the effective elastic moduli of hexagonal arrays of
superconducting, superrigid inclusions (phase 2) in a matrix such that ks/k; = o0,
p1/Kk1 = p2/ke = 0.4, and 02 /01 = co. We make the additional but weak assumption
that phase 1 determines the behaviour in relations (6.1) and (6.2), i.e.

K1t 2Ko o K1+ 2 S Kafto

= ) =z . 613
20 (K/Q + ,LLQ)O‘Q 404 (/‘02 + ,MQ)O'Q ( )

Figures 5 and 6 summarize our findings. The elastic moduli bounds (6.1) and (6.2)
are calculated using the conductivity values by Perrins et al. (1979). Note that only
the upper bounds on the elastic moduli contain conductivity information. The agree-
ment between the bounds and the elastic-moduli data by Eischen & Torquato (1993)
is quite good, especially in the case of the bulk modulus. It is important to empha-
size that conventional variational upper bounds on the effective properties (such as
Hashin—Shtrikman) here diverge to infinity as they do not incorporate information
that the superrigid phase is in fact disconnected. In contrast, our cross-property
upper bound uses the topological information that the infinite-contrast phase is dis-
connected through conductivity data.

Conductivity data for ‘equilibrium’ distributions of mutually impenetrable cylin-
ders have been obtained by Kim & Torquato (1990) for several volume fractions and
contrast ratios. We are not aware of elastic moduli data for the same random array.
It is of interest to see how well our cross-property relations predict the elastic mod-
uli in this instance. Let us consider the case of random, superconducting cylinders
(02/01 = 00) for several volume fractions and take ko/k1 = 10, 1 /K1 = po/Kke = 0.4.
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G,/0 =K,/K=00

20.0
/K =Hy/,=0.4
150 |  —— Newbounds

e Data

.
o
o

o
)

Dimensionless shear modulus, p./u,

0.0
0.0 0.2 0.4 0.6 0.8

Volume fraction, f,

Figure 6. Comparison of the cross-property bounds on the shear modulus (solid curves) with
exact shear modulus data by Eischen & Torquato (1993) (circles) for a superrigid, supercon-
ducting hexagonal array of circular inclusions. The bounds of statement 1.2 are calculated using
exact conductivity data by Perrins et al. (1979).

6.0 - e N —
G,/ =00
K,/k=10, W /K =p,/x,=0.4 ,

o
o
I
N\,

-~~~ HS upper bound 7
New bounds /

w >
o <)

n
<)

Dimensionless bulk modulus, x /k,

0.0 0.2 0.4 0.6
Volume fraction, f,

Figure 7. Cross-property bounds on the effective bulk modulus x« for a superconducting random
array of circular inclusions with x2/k1 = 10, p1/k1 = p2/ke = 0.4, given the exact effective
conductivity data given by Kim & Torquato (1990). Included is the Hashin—-Shtrikman upper
bound. The Hashin-Shtrikman lower bound coincides with our lower bound in this case.

Note that unlike the previous example, ka/k; is finite. Figure 7 shows the bulk
modulus-conductivity bounds. One can see that they are quite sharp. Our cross-
property upper bound provides substantial improvement over the Hashin—Shtrikman
upper bound on k, which of course remains finite in this instance. At the volume
fraction fy = 0.7, the Hashin—Shtrikman bound width is about 5 times larger than
the cross-property bound width.
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Figure 8. Comparison of the cross-property bounds on the shear modulus (solid curves) with
the exact result (6.16) for the shear modulus of the effective-medium geometry. Bounds of
statement 1.2 are calculated using the exact conductivity result (6.14). Dotted lines are the
Hashin—Shtrikman bounds. Heavy vertical solid line at f; = 0.5 represents the optimized bound
width of (6.24).

(e) Effective-medium theory geometries

It is useful to examine our cross-property bounds for structures in which the
effective properties are known exactly analytically. One such example are the class
of structures that correspond to the effective-medium theories (see Bruggeman 1935;
Budiansky 1965) in which the effective properties are given by the solutions of the
equations:

01 — O¢ 09 — O¢
=0 6.14
f101+(fe +f202_i_0‘3 ) (6.14)
K1 — Ke K2 — Ke
fl K1 +Me f2/€2+.ue ( )
f K1 — He Ha — He —0. (6.16)

Y+ Rette/ (Ke + 20te) ek 2 + Keple/ (Ke + 2fte)

Milton (1984) showed that the structures that correspond to the above formulae
are realized for a certain class of hierarchical granular aggregates in which grains of
comparable size are well separated.

To examine our bounds for these materials, we assume that the phase properties
are given by

0'2/0'1 =20, ,‘QQ/K1=M2//1,1 =].07 K/l/ﬂlzl. (617)

For a fixed volume fraction, we calculate the moduli o, ke, and p. by solving the
system of equations (6.14)—(6.16). Then we use the value o, to calculate the bounds
on the effective elastic moduli of the composite, according to the statements 1.1 and
1.2 and compare the bounds with the actual values e and p,. Figure 8 summarizes
our findings for the shear modulus bounds, and includes the corresponding Hashin-
Shtrikman bounds.

For f, < 0.2, our cross-property bounds are tight enough to provide almost exact
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predictions. At larger volume fractions, our cross-property bounds provide significant
improvement over the Hashin-Shtrikman bounds. The heavy solid vertical line at
f2 = 0.5 is the optimized bound width described immediately below.

(f) Symmetric composite materials

Let us now consider applying our cross-property bounds to so-called symmetric
materials. These are two-phase composites with equal volume fractions f; = fo = 0.5
that are statistically topologically equivalent upon interchange of the phases. The
effective conductivity o, of a symmetric composite is equal to (Keller 1964; Dykhne
1970)

Oy = 01092. (618)

For such materials, however, the effective elastic moduli depend on the specific mi-
crostructure and are not known exactly for any particular cases. Given the above
exact conductivity result (6.18), we can use our cross-property bounds to obtain the
allowable intervals of the effective bulk and shear moduli of any such composite.

The checkerboard model (see, for example, Dykhne 1970), which has square sym-
metry, is one example of such a construction. The square symmetry implies that our
results for the effective conductivity and bulk modulus apply for this model; our re-
sults for the shear modulus do not apply because the checkerboard is not elastically
isotropic. Other examples of symmetric composites are the effective-medium geome-
tries described above at f; = f» = 0.5. Still another example is a 50-50 random
tesselation of space into honeycomb cells.

It is clear that the bounds on the effective elastic moduli of symmetric materials
that follow from statements 1.1 and 1.2 depend on the phase conductivities o, and
0. One can then optimize the values oy and o, in order to get the tightest bounds
on the effective elastic moduli. We will not go into details and only give the formulas.
Specifically, if (k1 — k2)(u1 — pu2) < 0 then

2 2 ax
P (M) <r <P < Ptz + K (1 +uz)> | (6.19)
Hn1 + o H1 + po + 2"‘Jmax

2111 in\Y1 Y: 2y21 ax \! [
F, < Y193 + fhmin (Y1 + ya)) <p. < F, ( Yoy + famax (Y2 + y4)> ’ (6.20)
Y1 +ys + 2,umin Yo + Ya + 2,Umax
where function F' is defined by (1.3), and
o K1 MHmin _ K2 Mmax e — K2 Wmin — K1 Mmax
Y K1+ 2,Umin ’ b2 Ko + 2,U«max’ v3 Ko + 2,umin’ va K1 + 2,umax’
(6.21)
where fimax = max{p1, o} and fimin = min{py, go}. If on the contrary
(k1 = K2) (1 — p2) 20,
then
o A . , 1
P <M> < <F <u1uz + w1 (yp + ( v)m)) , (6.22)
f + o vhz + (1 =) + K
where

v = —(R1 £ ) (k2 + p2) + /(K1 + ) (B2 + 1) (k1 + pi2) (k2 + ) (6.23)
(K1 — Ko) (1 — p2)
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and

yiys +p(Yy + (1 —")ys) Yoya + 1 (V'ys + (1 —v")y2)
FF‘ / ! S B S FF‘ /
Y'ys + (1 =)y + Y'ya + (1 = 7)ya +

(6.24)
where
N = —(y1 + pa)(ys + p2) + /(v + ) (ys + p2) (1 + p2) (ys + M), (6.25)
(Y1 — y3) (1 — p2)
v —Wat pa) e+ )+ (ya + ) (Y2 + p2) (ya + p2) (y2 + p1) (6.26)

(ya — y2) (11 — p2) :

The optimized bounds (6.24) for the parameters given by (6.17) are represented

by the bold vertical line on figure 8. These bounds provide significant improvement

over our unoptimized bounds. For the bulk modulus, the optimized bounds provide

a six-fold improvement over the Hashin—Shtrikman bounds. The optimized bounds
are remarkably sharp, being within 8 percent of the exact results.

The authors thank Graeme Milton for helpful discussions. We gratefully acknowledge the support
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